
STANDARDS AND
INFORMATION DOCUMENTS

AES31-2-2019
revision of AES31-2-2012

Users of this standard are encouraged to determine if they are using the latest
printing incorporating all current amendments and editorial corrections. Informa-
tion on the latest status, edition, and printing of a standard can be found at:
http://www.aes.org/standards

AUDIO ENGINEERING SOCIETY, INC.
60 East 42nd Street, New York, New York 10165, US.

AES standard on digital audio –
File format for transferring digital audio data
between systems of
different type and manufacture

The AES Standards Committee is the organization responsible for the standards
program of the Audio Engineering Society. It publishes technical standards,
information documents and technical reports. Working groups and task groups with a
fully international membership are engaged in writing standards covering fields that
include topics of specific relevance to professional audio. Membership of any AES
standards working group is open to all individuals who are materially and directly
affected by the documents that may be issued under the scope of that working group.

Complete information, including working group scopes and project status is available
at http://www.aes.org/standards. Enquiries may be addressed to standards@aes.org

The AES Standards Committee is supported in part by those listed below who, as
Standards Sustainers, make significant financial contribution to its operation.

 This list is current as of
2019/6/30

STANDARDS

AES31-2-2019
Revision of AES31-2-2012

2019-5-22 printing

AES standard on digital audio –
File format for transferring digital
audio data between systems of
different type and manufacture

Published by
Audio Engineering Society, Inc.
Copyright © 2012, 2019 by the Audio Engineering Society

Abstract

The Broadcast Wave Format is a file format for audio data. It can be used for the seamless exchange of audio
material between (i) different broadcast environments and (ii) equipment based on different computer
platforms.

As well as the audio data, a BWF file (BWFF) contains the minimum information - or metadata - that is
considered necessary for all broadcast applications. The Broadcast Wave Format is based on the Microsoft
WAVE audio file format. This specification adds a “Broadcast Audio Extension” chunk to the basic WAVE
format.

An optional Extended Broadcast Wave Format (BWF-E) file format is designed to be a compatible extension of
the Broadcast Wave Format (BWF) for audio file sizes larger than a conventional Wave file. It extends the
maximum size capabilities of the RIFF/WAVE format by increasing its address space to 64 bits where
necessary. A set of machine-readable loudness metadata is included.

This revision includes a new annex I to describe a universal 'ubxt' chunk to carry human-readable information
in UTF-8 multi-byte characters to support international character sets. This is compatible with EBU v2
broadcast wave files.

An AES standard implies a consensus of those directly and materially affected by its scope and provisions and
is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an AES
standard does not in any respect preclude anyone, whether or not he or she has approved the document, from
manufacturing, marketing, purchasing, or using products, processes, or procedures not in agreement with the
standard. Prior to approval, all parties were provided opportunities to comment or object to any provision.
Attention is drawn to the possibility that some of the elements of this AES standard or information document
may be the subject of patent rights. AES shall not be held responsible for identifying any or all such patents.
Approval does not assume any liability to any patent owner, nor does it assume any obligation whatever to
parties adopting the standards document. This document is subject to periodic review and users are cautioned to
obtain the latest edition. Recipients of this document are invited to submit, with their comments, notification of
any relevant patent rights of which they are aware and to provide supporting documentation

Audio Engineering Society Inc. 551 Fifth Avenue, Room 1225, New York, NY 10176, US.
www.aes.org/standards standards@aes.org.

AES31-2-2019

- 2 -

2019-5-22 printing

Contents

0 Introduction..4
0.1 General ...4
0.2 Data types ...4

1 Scope ..5
2 Normative references..5
3 Definitions and abbreviations ..5
4 BWF file...6

4.1 Existing Chunks defined as part of the RIFF Format..6
4.2 Additional chunks ..6
4.3 Contents of a BWFF..6
4.4 Broadcast audio extension chunk ...7

Annex A (normative) RIFF Wave file format...10
A.1 Waveform audio file format (Wave) ..10
A.2 PCM format...11
A.3 Storage of Wave data...13

Annex B (normative) Chunk order ..14
Annex C (normative) Filename conventions..15

C.1 General...15
C.2 File-name length...15
C.3 File-name extension ...15
C.4 File-name character set..15

Annex D (informative) Multi-channel usage...16
D.1 General...16
D.2 Multi-channel audio data packing...16
D.3 Channel assignments in multi-channel files ...17

Annex E (informative) Other audio codings ..18
E.1 General ...18
E.2 MPEG files..18

Annex F (normative) Extended file format (BWF-E)..19
F.1 Introduction ...19
F.2 Exceeding the 4-gigabyte limit..19
F.3 Compatibility between BWF and BWF-E..20
F.4 RIFF/WAVE and RF64/WAVE structures ...22

Annex G (normative) BWFF versions ...24
G.0 Version 0 ..24
G.1 Version 1 ..24
G.2 Version 2 ..24

Annex H (normative) Loudness parameters ..25
H.1 Treatment of Loudness Parameters...25
H.2 Loudness parameter references ..26
H.3 Loudness informative references ...26

Annex I (normative) Universal broadcast audio extension chunk..27
I.1 General ..27
I.2 Contents of a BWFF with ‘ubxt’ chunk ...27
I.3 Universal broadcast audio extension chunk ..27

Annex J Bibliography...31

AES31-2-2019

- 3 -

2019-5-22 printing

Foreword
[This foreword is not part of the AES31-2 Standard on network and file transfer of audio – Audio-file transfer
and exchange – File format for transferring digital audio data between systems of different type and
manufacture.]

This document was produced by a writing group of the SC-02-08 Working Group on Audio-File Transfer and
Exchange of the SC-02 Subcommittee on Digital Audio under project AES-X066. Contributors to this project
included: D. Ackerman, S. Aoki, I. Beynon, D. Brenan, J. Bull, R. Chalmers, B. Devlin, J. Emmett, A. Faust, C.
Garza, Y. Grabit, U. Henry, A. Holzinger, P. Jessop, H. Nakashima, M. Yonge, J. Yoshio.

M. Yonge, chair
B. Harris, vice-chair

SC-02-08 Working Group on Audio-File Transfer and Exchange
2006-03-25

Foreword to 2012 edition

This revision incorporates AES31-2 Am.1 2008, Amendment 1 to AES31-2 - Audio-file transfer and exchange -
Part 2: File format for transferring digital audio data between systems of different type and manufacture -
Extended file format for audio to exceed 4 GByte as annex F.

This revision also introduces a means to carry loudness metadata related to the audio content. These files are
identified as version 2 and are both forwards and backwards compatible with version 1 files and
implementations.

M. Yonge, chair SC-02-08 Working Group on Audio-File Transfer and Exchange
2012-11-19

Foreword to 2019 edition

This revision includes a new annex I to describe a universal 'ubxt' chunk to carry human-readable information
in UTF-8 multi-byte characters to support international character sets. The 'ubxt' chunk is always in addition to
the basic 'bext' chunk and never used on its own. The document also specifies requirements for implementation,
and priority of data when the machine-readable elements in the 'bext' and 'ubxt' chunks are not identical. This
revision is intended to be compatible with IEC 62942, currently in development.

This revision replaces and supersedes AES31-2-2012.

M. Yonge, chair SC-02-08 Working Group on Audio-File Transfer and Exchange
2019-02-23

Note on normative language

In AES standards documents, sentences containing the word “shall” are requirements for compliance with the
document. Sentences containing the verb “should” are strong suggestions (recommendations). Sentences giving

permission use the verb “may”. Sentences expressing a possibility use the verb “can”.

AES31-2-2019

- 4 -

2019-5-22 printing

AES standard on digital audio –
File format for transferring digital
audio data between systems of
different type and manufacture

0 Introduction

0.1 General
The broadcast-wave-format file (BWFF) is based on the Microsoft Wave audio file format, which is a type of
file specified in the Microsoft resource interchange file format (RIFF). Wave files specifically contain audio
data. The basic building block of a RIFF file is a chunk which contains specific information, an identification
field, and a size field. A RIFF file contains a number of chunks.

The BWFF specifically includes a <Broadcast Audio Extension> chunk to carry certain metadata important for
broadcast and professional use. For reliable interchange, some restrictions apply to the format of the audio data.

The Broadcast Wave Format was first developed using ASCII text for all fields. Later, as the format was further
developed, it was proposed to use multi-byte characters to internationalize the format. It was understood that to
use multi-byte character sets within the existing format would cause compatibility issues when multi-byte
metadata was parsed by applications expecting ASCII text. The separate nature of human-readable and
machine-readable metadata was established, and a new "universal" chunk was established to carry
internationalized human-readable metadata using multi-byte character sets without interoperability issues. This
is described in annex I.

This document contains the specification of the broadcast audio extension chunk and its use with PCM-coded
audio data. Basic information on the RIFF format and how it can be extended to other types of audio data is
given in annex A and annex F. Details of the PCM Wave format are also given in annex A.

0.2 Data types
The following mnemonics describe the data types used throughout this document. Multi-byte data types are
little-endian:

Data Type Meaning Equiv. C type

CHAR 8-bit signed integer, representing integer values from –128 to +127 signed char

BYTE 8 bit unsigned integer, representing integer values from 0 to 255 unsigned char

INT 16-bit signed integer, representing integer values from
–32768 to +32767

signed short int

WORD 16-bit unsigned integer, representing integer values from 0 to +65535 unsigned short int

LONG 32-bit signed integer, representing integer values from
–2,147,483,648 to +2,147,483,647

signed long int

DWORD 32-bit unsigned integer, representing integer values from
0 to +4,294,967,295

unsigned long int

AES31-2-2019

- 5 -

2019-5-22 printing

1 Scope
This standard defines a file format for interchanging audio data between compliant equipment. It is primarily
intended for audio applications in professional recording, production, post production, and archiving.

It is derived from the EBU Broadcast Wave Format but is also compatible with variant specifications including
ITU-R BR.1352-2-2002 and the Japan Post Production Association’s BWF-J.

An optional extended format, BWF-E, supports 64-bit addressing to permit file sizes greater than 4 GBytes.
Provision is made to support international character sets for human-readable information.

2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references, the
latest edition of the referenced document (including any amendments) applies.

SMPTE 330M-2000; SMPTE standard for television - Unique Material Identifier (UMID), Society of Motion
Picture and Television Engineers, White Plains, NY., US.

ISO/IEC 646:1991; Information technology - ISO-7-bit coded character set for information interchange.
International Standards Organisation, Geneva, Switzerland

ISO 8601; Data elements and interchange formats - Information interchange - Representation of dates and
times International Standards Organisation, Geneva, Switzerland

ISO/IEC 10646:2012; Information technology - Universal Multiple-Octet Coded Character Set (UCS)

IETF RFC 3629; UTF-8, a transformation format of ISO 10646

3 Definitions and abbreviations
For the purposes of this document, the following terms and definitions apply.

3.1
RIFF
resource interchange file format, a file representation upon which the Wave file format is based

3.2
chunk
data package within RIFF files containing related data

3.3
ASCII
7-bit character code compliant with ISO/IEC 646

3.4
Wave
Audio file format based on the RIFF file structure

3.5
EBU
European Broadcasting Union

AES31-2-2019

- 6 -

2019-5-22 printing

3.6
Broadcast Wave Format File
BWFF
Wave file containing the bext chunk as described in this standard

3.7
bext
broadcast extension chunk

3.8
SMPTE
Society of Motion Picture and Television Engineers

3.9
UMID
unique material identifier as defined in SMPTE 330M

3.10
Broadcast Wave Format, Extended
BWF-E
an optional extended format that replaces a RIFF header with an RF64 header to support 64-bit addressing to
permit file sizes greater than 4 GBytes

3.11
RF64
a structure equivalent to the RIFF file type supporting 64-bit addressing.

4 BWF file

4.1 Existing Chunks defined as part of the RIFF Format
This specification uses a number of RIFF chunks which are already defined (See annex A). These are:

<fmt-ck> Format Chunk
<wave-data> Audio data chunk

4.2 Additional chunks
Additional chunks may be present in the file. Some of these may be outside the scope of this standard.
Applications may or may not interpret or make use of these chunks, so the integrity of the data contained in
such unknown chunks can not be guaranteed. However, compliant applications should pass on unknown chunks
with their contents unchanged.

4.3 Contents of a BWFF
A BWFF shall contain the RIFF “Wave” header and at least the following chunks:

<WAVE-form>
RIFF(‘WAVE’
 <fmt-ck> /* Format of the audio signal: PCM/MPEG */
 <broadcast_audio_extension> /* information on the audio sequence */
 <wave-data>) /* sound data */

AES31-2-2019

- 7 -

2019-5-22 printing

4.4 Broadcast audio extension chunk
Extra parameters needed for exchange of material between broadcasters are added in a specific Broadcast
Audio Extension, or "bext" chunk. The structure of the bext chunk shall be defined as follows:

typedef struct chunk_header {
 DWORD ckID; /* (broadcastextension)ckID=bext */
 DWORD ckSize; /* size of extension chunk */
 BYTE ckData[ckSize]; /* data of the chunk */
} CHUNK_HEADER;
typedef struct broadcast_audio_extension {
CHAR Description[256]; /* ASCII : “Description of the sound sequence” */
CHAR Originator[32]; /* ASCII : “Name of the originator” */
CHAR OriginatorReference[32]; /* ASCII : “Reference of the originator” */
CHAR OriginationDate[10]; /* ASCII : “yyyy:mm:dd” */
CHAR OriginationTime[8]; /* ASCII : “hh:mm:ss” */
DWORD TimeReferenceLow; /* First sample count since midnight, low word */
DWORD TimeReferenceHigh; /* First sample count since midnight, high word */
WORD Version; /* Version of the BWF; unsigned binary number. See

annex G */
BYTE UMID_0; /* Binary byte 0 of SMPTE UMID */
....
BYTE UMID_63; /* Binary byte 63 of SMPTE UMID */

The content of the fields in the bext chunk shall be defined as shown in table 1. Note that in applications where
ASCII text is inappropriate for human-readable information - for example when a character set other than
ISO 646 is required - it is necessary to carry it by another means, for example, in a dedicated metadata chunk
added to the BWFF. See also Annex I, Universal broadcast audio extension chunk (ubxt).

All the items except Description, Originator, OriginatorReference and CodingHistory should have
the same content as that of each corresponding item of the ubxt chunk (see annex I), if present. If machine-
readable data in the bext chunk is updated, the corresponding machine-readable data in the ubxt chunk should
also be updated identically.

WORD LoudnessValue; /* WORD: Integrated Loudness Value of the file in
LUFS (multiplied by 100) see annex H */

WORD LoudnessRange; /* WORD : Loudness Range of the file in LU
(multiplied by 100) see annex H */

WORD MaxTruePeakLevel; /* WORD: Maximum True Peak Level of the file
expressed as dBTP (multiplied by 100) see annex H */

WORD MaxMomentaryLoudness; /* WORD: Highest value of the Momentary Loudness
Level of the file in LUFS (multiplied by 100) see
annex H */

WORD MaxShortTermLoudness; /* WORD: Highest value of the Short-Term Loudness
Level of the file in LUFS (multiplied by 100) see
annex H */

BYTE Reserved[180]; /* 180 bytes, reserved for future use, set to “NULL”
*/

CHAR CodingHistory[]; /* ASCII : « History coding » */
} BROADCAST_EXT

AES31-2-2019

- 8 -

2019-5-22 printing

Table 1: bext field content definitions

Description Human ASCII string, 256 characters or less, containing a description of the
sequence. If line breaks are used, lines shall be terminated by
<CR><LF>. If data is not available or if the length of the string is less
than 256 characters, the first unused character shall be a null character
(00

16
).

 If line breaks are used, lines shall be terminated by <CR><LF>.
 To help applications that only display a short description, a
summary of the description should be contained in the first 64
characters. The last 192 characters may be used for details.

Originator Human ASCII string, 32 characters or less, containing the name of the
originator of the audio file. If data is not available or if the length of
the string is less than 32 characters, the first unused character shall be
a null character (00

16
).

OriginatorReference Human ASCII string, 32 characters or less, containing a reference allocated by
the originating organization. See references J.11 and J.6.
If data is not available or if the length of the string is less than 32
characters, the first unused character shall be a null character (00

16
).

OriginationDate Human ASCII string, 10 characters, containing the date of creation of the
audio sequence.
 The date shall be represented as the year, month, and day of the
Gregorian calendar. If data is unavailable, the default value shall be
the origin of the modified Julian date (MJD), namely, 1858-11-17.
 Format: CCYY-MM-DD
CCYY = 4 characters for century and year shall contain a value
between 0000 and 9999
- = 1 character
MM = 2 characters for month shall contain a value between 01 and 12
- = 1 character
DD = 2 characters for day of month shall contain a value between 01
and 31
All components shall be present.
 Hyphen characters, “-“, shall be used as separators within the date
expression in compliance with ISO 8601. For compatibility with
alternative implementations, reproducing equipment should also
recognise the following separator characters: “_” underscore “:”
colon “ “ space “.” period.

OriginationTime Human ASCII string, 8 characters, containing the time of creation of the audio
sequence in hours, minutes and seconds. If data is unavailable, the
default value shall be 00:00:00.
 Format: hh:mm:ss
hh = 2 characters for hours shall contain a value between 00 and 23 if
time given
: = 1 character
mm = 2 characters for minutes shall contain a value 00 - 59 if time
given
: = 1 character
ss = 2 characters for seconds shall contain a value between 00 and 59
All components shall be present.
Colon characters, “:”, shall be used as separators within the time of

AES31-2-2019

- 9 -

2019-5-22 printing

day expression in compliance with ISO 8601. For compatibility with
alternative implementations, reproducing equipment should also
recognise the following characters: “_” underscore “-” hyphen “ “
space “.” period.

TimeReference Machine This field shall contain the sample address count [time code] of the
sequence. It is a 64-bit unsigned value which contains the sample
count since midnight of the first sample in the audio data. The number
of samples per second depends on the sample frequency which is
defined in the field <nSamplesPerSec> from the <fmt-ck>.
The default value is zero, corresponding to midnight.

Version Machine An unsigned binary number indicating the version of the BWF.
For Version 1 it shall be set to 0001

16
 and

for Version 2 it shall be set to 0002
16

.
See annex G

UMID Machine 64 bytes containing an extended UMID to SMPTE 330M. If a 32-byte
basic UMID is used, the last 32 bytes shall be filled with zeros. If no
UMID is available, the 64 bytes shall be filled with zeros.

NOTE the length of the UMID is coded at the head of
the UMID itself

LoudnessValue Machine A 16-bit signed integer, representing the Integrated Loudness Value of
the file in LUFS. See annex H

LoudnessRange Machine A 16-bit signed integer, representing the Loudness Range of the file in
LU. See annex H

MaxTruePeakLevel Machine A 16-bit signed integer, representing the Maximum True Peak Value
of the file in dBTP. See annex H

MaxMomentaryLoudness Machine A 16-bit signed integer, representing the highest value of the
Momentary Loudness Level of the file in LUFS. See annex H

MaxShortTermLoudness Machine A 16-bit signed integer, representing the highest value of the Short-
term Loudness Level of the file in LUFS. See annex H

Reserved Machine 180 bytes reserved for extension. These 180 bytes shall be set to zero.
CodingHistory Human A variable-size block of ASCII characters comprising 0 or more

strings each terminated by <CR><LF>. The first unused character shall
be a null character (00

16
).

Each string shall contain a description of a coding process applied to
the audio data. Each new coding application should add a new string
with the appropriate information.
See Bibliography, item10

AES31-2-2019

- 10 -

2019-5-22 printing

Annex A (normative) RIFF Wave file format

A.1 Waveform audio file format (Wave)

A.1.1 General
The information in this annex follows the specification documents of the Microsoft RIFF file format.

A RIFF file shall be identified by the four ASCII characters “RIFF” as the first four octets in the file. The next
four octets shall indicate the file length, in octets.

Data contained in a RIFF file is organised into chunks. The first four octets of each chunk shall represent a code
to identify that chunk. The next four octets shall indicate the chunk length, in octets. Playback systems shall
identify each chunk and ignore any unknown chunks encountered.

A.1.2 Required Wave chunks
A format chunk <fmt-ck> shall always occur before the <wave-data>. Both of these chunks shall be present in
a Wave file.

<WAVE-form> ->

 RIFF (“WAVE”

 <fmt-ck> /* Format chunk */

 <wave-data>) /* Wave data */

The Wave chunks are described in the following sections.

A.1.3 Wave format chunk
The Wave format chunk <fmt-ck> specifies the format of the <wave-data>.

The <fmt-ck> shall be defined as follows:

<fmt-ck> -> fmt(<common-fields>

 <format-specific-fields>)

<common-fields> ->

 struct{

 WORD wFormatTag; /* Format category */

 WORD nChannels; /* Number of channels */

 DWORD nSamplesPerSec; /* Sampling frequency */

 DWORD nAvgBytesPerSec; /* For buffer estimation */

 WORD nBlockAlign; /* Data block size */

 }

The content of the fields in the <common-fields> portion of the chunk shall be defined as shown in table A.1.

AES31-2-2019

- 11 -

2019-5-22 printing

Table A.1: Format chunk - common fields

Field Description

wFormatTag A number indicating the Wave format category of the file. The content of the
<format-specific-fields> portion of the format chunk and the interpretation of
the waveform data depend on this value.

nchannels The number of channels represented in the waveform data, such as 1 for mono or 2 for
stereo.

nSamplesPerSec The sampling frequency, in samples per second, at which each channel should be
reproduced.

nAvgBytesPerSec The average number of bytes per second at which the waveform data should be
transferred. Playback software can estimate the buffer size using this value.

nBlockAlign The block alignment in bytes of the waveform data. Playback software needs to
process a multiple of <nBlockAlign> bytes of data at a time, so the value of
<nBlockAlign> can be used for buffer alignment.

The <format-specific-fields> shall comprise zero or more bytes of parameters. Which parameters occur
depends on the Wave format category. Playback software should allow for (and ignore) any unknown <format-
specific-fields> parameters that occur at the end of this field.

A.1.4 Wave format categories
The format category of a Wave file shall be specified by the value of the <wFormatTag> field of the format
chunk. The representation of data in <wave-data>, and the content of the <format-specific-fields> of
the format chunk, shall depend on the format category.

Currently defined open non-proprietary Wave format categories are shown in table A.2.

Table A.2: Wave format categories

wFormatTag Value Format category

WAVE_FORMAT_PCM 0001
16
 Pulse code modulation (PCM) format

NOTE Although other Wave formats exist, only the above formats are at present used with the
BWFF. Details of the PCM Wave format are provided in A.2. General information on other
Wave formats is given in annex E.

A.2 PCM format
If the <wFormatTag> field of the <fmt-ck> is set to WAVE_FORMAT_PCM, then the waveform data shall
consist of samples represented in PCM format. For PCM waveform data, the <format-specific-fields>
shall be defined as follows:

<PCM-format-specific> ->

 struct{

 WORD nBitsPerSample; /* Sample size */

 }

The <nBitsPerSample> field shall specify the number of bits of data used to represent each audio sample of
each channel. If there are multiple channels, the sample size shall be the same for each channel.

AES31-2-2019

- 12 -

2019-5-22 printing

The <nBlockAlign> field should be equal to the following formula, rounded to the next whole number:

nChannels � BytesPerSample

The value of BytesPerSample shall be calculated by rounding up nBitsPerSample to the next whole byte.
Where the audio sample word is less than an integer number of bytes, the most significant bits of the audio
sample shall be placed in the most significant bits of the data word; the unused data bits adjacent to the least-
significant bits shall be set to zero.

For PCM data, the <nAvgBytesPerSec> field of the format chunk shall be equal to the following formula:

nSamplesPerSec � nBlockAlign

NOTE: the original Wave specification permits, for example, 20-bit samples from two channels
packed into 5 bytes - sharing a single byte for the least significant bits of the two channels.
This document specifies a whole number of bytes per audio sample in order to reduce
ambiguity in implementations and to achieve maximum interchange compatibility.

A.2.1 Data packing for PCM WAVE files
In a single-channel Wave file, samples shall be stored consecutively.

For stereo Wave files, channel 0 shall represent the left channel, and channel 1 shall represent the right channel.
Tables A.3a and A.3b show examples of data packing for 16-bit mono and stereo Wave files:

Table A.3a: Data packing for 16-bit mono PCM

Sample 1 Sample 2
Channel 0

low-order byte
Channel 0

high-order byte
Channel 0

low-order byte
Channel 0

high-order byte

Table A.3b: Data packing for 16-bit stereo PCM

Sample 1
Channel 0 (left)
low-order byte

Channel 0 (left)
high-order byte

Channel 1 (right)
low-order byte

Channel 1 (right)
high-order byte

In multiple-channel Wave files, samples shall be interleaved in channel sequence (see annex D for examples).

A.2.2 Data format of the samples
Each sample is contained in an integer i. The size of i is the smallest number of bytes required to contain the
specified sample size. The least significant byte shall be stored first. The bits that represent the sample
amplitude are stored in the most significant bits of i, and the remaining bits shall be set to zero.

For example, if the sample size recorded in <nBitsPerSample> is 20 bits, then each sample is stored in a
three-byte integer. The least significant four bits of the first (least significant) byte is set to zero. The data
format and maximum and minimum values for PCM waveform samples of various sizes are shown in table A.4.
A corresponding example of 16-bit PCM data values is shown in table A.5.

Table A.4: PCM data format

AES31-2-2019

- 13 -

2019-5-22 printing

Sample size Data format Maximum value Minimum value

> 8 bits Signed integer i Largest positive value
of i

Most negative value
of i

Table A.5: PCM data format - 16-bit

Format Maximum value Minimum value Midpoint value

16-bit PCM 32767 (7FFF
16

) -32768 (-8000
16

) 0

NOTE legacy word sizes of 8 bits and lower typically used a different scheme

A.2.3 Examples of PCM Wave files
Examples of Format-Chunk settings for four cases are shown in table A.6. The cases are:

A PCM Wave file with 48 kHz sampling rate, mono, 16 bits per sample

B PCM Wave file with 44,1 kHz sampling rate, stereo, 16 bits per sample

C PCM Wave file with 96 kHz sampling rate, stereo, 24 bits per sample

D PCM Wave file with 48 kHz sampling rate, stereo, 20 bits per sample

Table A.6: PCM Wave format chunk examples

 Field A B C D
wFormatTag 1 1 1 1
nchannels 1 2 2 2
nSamplesPerSec 48000 44100 96000 48000
nAvgBytesPerSec 96000 176400 576000 288000

Common fields

nBlockAlign 2 4 6 6

PCM-format-specific nBitsPerSample 16 16 24 20

A.3 Storage of Wave data
The <wave-data> CHUNK contains the waveform data as little-endian integer values. It shall be defined as
follows:

<wave-data> -> { <data-ck> }
<data-ck> -> data(<wave-data>)

AES31-2-2019

- 14 -

2019-5-22 printing

Annex B (normative) Chunk order

According to RIFF rules, chunks may be encountered in any order in the file. In the specific case of a Wave
file, the <fmt-ck> shall always be before the <data-ck>. Other chunks can be in any order. For example,
some applications may find it convenient to write metadata chunks after the audio data chunk instead of before
it.

Although a particular application may have internal conventions regarding the order in which it expects to write
chunks, it should be able to replay files from other systems with chunks in any different order.

NOTE 1 the extended format described in annex F requires the "ds64" chunk, or its
placeholder "JUNK" chunk, to be the first chunk in the file as a special exception.

NOTE 2 the "JUNK" chunk is not required for a compliant BWF file, but would be included by
applications that wished to accommodate a file size exceeding 4 GBytes.

AES31-2-2019

- 15 -

2019-5-22 printing

Annex C (normative) Filename conventions
C.1 General
The general interchange of audio files mean that they must be playable on computer and operating-system types
that may be quite different from the originating system. An inappropriate filename could mean that the file
cannot be recognised by the destination system. For example, some computer operating systems limit the
number of characters in a file name. Others are unable to accommodate multi-byte characters. Some characters
have special significance in certain operating systems and should be avoided.

These guidelines are intended to identify best practice for general international interchange.

C.2 File-name length
BWFF file names should not exceed 31 characters, including the file-name extension.

C.3 File-name extension
BWF files shall use the same four-character file-name extension, ".wav", as a conventional Wave file. This
allows the audio content to be played on most computers without additional software. Practical implementations
should also accept other extensions, such as ".bwf", that may have been used in error.

C.4 File-name character set
File names for international interchange should use only ASCII (ISO/IEC 646) 7-bit characters in the range 32
to 126 (decimal).

Character Decimal
value

Hexadecimal
value

(Space) 32 20
16

...
~ (tilda) 126 7E

16

Additionally, the following characters are reserved for special functions on certain file systems and should not
be used in file names:

Character Decimal
value

Hexadecimal
value

“ 34 22
16

* 42 2A
16

/ 47 2F
16

: 58 3A
16

< 60 3C
16

> 62 3E
16

? 63 3F
16

\ 92 5C
16

| 124 7C
16

Additionally, the following characters should not be used for the first or last character in a file name:

Character Decimal
value

Hexadecimal
value

 (Space) 32 20
16

. (period) 46 2E
16

AES31-2-2019

- 16 -

2019-5-22 printing

Annex D (informative) Multi-channel usage

D.1 General
Editing systems typically need access to mono files in order to be able to edit between them flexibly. However,
some location recorders operate more efficiently when recording multiple channels to a single multi-channel
file. Accordingly, many editing application are able to convert multi-channel source recordings to a coherent set
of mono files.

D.2 Multi-channel audio data packing
Files with multiple audio channels are constructed by a simple extension of the existing format. The Channel
field in the <fmt-ck> is set to the number of channels and the audio data is packed sequentially, as shown in
the following examples:

D.2.1: Data packing for 24-bit mono PCM audio data

Sample 1 Sample 2

Low-order byte Mid-order byte High-order byte Low-order byte Mid-order byte High-order byte

D.2.2: Data packing for 16-bit stereo (2-channel) PCM audio data

Sample 1 Sample 2
Channel 1 (Left) Channel 2 (Right) Channel 1 (Left) Channel 2 (Right)

Low-order
byte

High-order
byte

Low-order
byte

High-order
byte

Low-order
byte

High-order
byte

Low-order
byte

High-order
byte

D.2.3: Data packing for 24-bit, 4-channel PCM audio data

Sample 1 Sample 2
Channel

1
Channel

2
Channel

3
Channel

4
Channel

1
Channel

2
Channel

3
Channel

4

Low
-order byte

M
id-order byte

H
igh-order byte

Low
-order byte

M
id-order byte

H
igh-order byte

Low
-order byte

M
id-order byte

H
igh-order byte

Low
-order byte

M
id-order byte

H
igh-order byte

Low
-order byte

M
id-order byte

H
igh-order byte

Low
-order byte

M
id-order byte

H
igh-order byte

Low
-order byte

M
id-order byte

H
igh-order byte

Low
-order byte

M
id-order byte

H
igh-order byte

AES31-2-2019

- 17 -

2019-5-22 printing

MSB LSB

High-order
byte

Mid-order
byte

Low-order
byte

Figure D.1: 24-bit sample packing

D.3 Channel assignments in multi-channel files
Channel usage is not considered in this standard. There are two main application areas.

D.3.1 Distribution and archive
Stereo or surround-sound recordings for archiving or distribution of intermediate elements or finished masters
may use the audio channels according to one of a number of predetermined schemes. Examples include:

 ITU-R BR.1384-2; Parameters for international exchange of multi-channel sound recordings with or

without accompanying picture

 EBU Technical Recommendation R91-1998; Track allocations and recording levels for the exchange of
multichannel audio signals

 SMPTE S320M-1999; Channel Assignments and Levels on Multichannel Audio Media (TV)

 SMPTE S323M-2004; Channel Assignments and Levels on Multichannel Audio Media (Film)

D.3.2 Production recordings
Production recordings may use the channels in many different ways, described in traditional recording report or
in a suitable form of metadata associated with the audio recording. The set of audio channels may
accommodate related recordings in mono, LR stereo, MS stereo, or surround sets.

AES31-2-2019

- 18 -

2019-5-22 printing

Annex E (informative) Other audio codings

E.1 General
All non-PCM Wave types contain both a <fact-ck> fact chunk and an extended wave format description
within the <fmt-ck> format chunk.

E.2 MPEG files
Details of MPEG Wave format are given in EBU Tech 3285_S1-1997, Specification of the Broadcast Wave
Format, A format for audio data files in broadcasting, Supplement 1 – MPEG audio (see J.5)

AES31-2-2019

- 19 -

2019-5-22 printing

Annex F (normative) Extended file format (BWF-E)

F.1 Introduction
The 32-bit address space of a Wave file limits its maximum size to 4 GB. Some practical computer systems
may impose a lower limit of 2 GB. This is not a significant obstacle for mono files at basic rate sampling
frequencies, but the limitation becomes increasingly significant as the number of channels in the file is
increased or when double- or quadruple-rate sampling frequencies are used.

It is possible to concatenate multiple BWF files using the EBU “link” chunk. This technique is described in
reference 8 of the Bibliography: EBU T3285-S4-2003 Specification of the Broadcast Wave Format, A format
for audio data files in broadcasting, Supplement 4: <link> chunk.

The extended file format described below is intended to fulfill the longer-term need for single file sizes greater
than 4 GByte. It extends the maximum size capabilities of the RIFF/WAVE format by increasing its address
space to 64 bits where necessary. The required effort for software implementers is small.

The Broadcast Wave Format, Extended (BWF-E) file format is designed to be a compatible extension of the
Broadcast Wave Format (BWF). BWF-E is also designed to be mutually compatible with the EBU T3306
"RF64" extended format (see Bibliography item 5). Note that EBU T3306 contains additional specifications for
channel-mask assignments that are not included in this document.

The extended format is discussed here as an extension to the underlying RIFF/Wave file format. Compliance
with this standard will also require the bext chunk defined in 4.4 and may require other data chunks.

F.2 Exceeding the 4-gigabyte limit

F.2.1 General
The reason for the 4 GByte limit is the 32-bit addressing inherent in the RIFF and WAVE file formats. With
32-bit addressing, a maximum of 4294967296 bytes = 4 GByte can be addressed. See figure F.1.

R
I
F
F
"

W
A
V
E

si
ze

, 3
2

bi
ts

f
m
t

"

si
ze

fo
rm

at
 d

at
a

up to 4 GB of RIFF data

RIFF chunk size (<= 4 GBytes)

d
a
t
a

si
ze

w
av

e
da

ta

Format
chunk

Data
chunk

Figure F.1 - Conventional RIFF/WAVE format

To work with larger files, a larger address range is needed. This standard specifies 64-bit addressing. However,
simply changing the size of every field in a Wave file to support 64-bit addressing would produce a file that is
not compatible with the standard RIFF/WAVE format - an obvious but important observation.

NOTE Additional file-size constraints may be imposed by computer implementations and
operating systems

AES31-2-2019

- 20 -

2019-5-22 printing

F.2.2 64-bit resource interchange file format (RF64)
This standard defines a 64-bit based Resource Interchange File Format called "RF64". The "RF64" format shall
be identical to the RIFF format except for the following changes.

The ID RF64 shall be used instead of ‘RIFF’ in the first four bytes of the file.

A ‘ds64’ (data size 64) chunk shall be added. This shall be the first chunk after the RF64 chunk. The ds64
chunk shall contain three 64-bit integer values, which provide substitute values for the equivalent 32-bit fields
of the RIFF format:

riffSize shall substitute for the RIFF size field
dataSize shall substitute for the size field of the data chunk
sampleCount shall substitute for the sample count value in the fact chunk

For all three 32-bit fields of the RIFF/WAVE format the following rule shall apply:

 If the 32-bit value in the field is not "FFFFFFFF

16
" then this 32-bit value shall be used.

 If the 32-bit value in the field is "FFFFFFFF
16

" the 64-bit value in the ds64 chunk shall be used instead.

An extended table of ChunkSize64 elements is intended to support additional 64-bit variables. (see G.4.2).
Space should be reserved for a minimum of 50 elements.

The complete structure of the "RF64" file format is illustrated in figure 2. See also G.4.2.

R
F
6
4
"

W
A
V
E

F
F
F
F
F
F
F
F

16

d
s
6
4
"

si
ze

R
IF

F
si

ze
 lo

w
R

IF
F

si
ze

 h
ig

h
da

ta
 s

iz
e

lo
w

da
ta

 s
iz

e
hi

gh
sa

m
pl

e
co

un
t l

ow
sa

m
pl

e
co

un
t h

ig
h

ta
bl

e
le

ng
th

ta
bl

e

If FFFFFFFF16, do not use; instead
use data size in ds64 chunk

ds64 chunk
contains 64-bit
sizes and values

RF64 identifies extended file exceeding 4 GByte
If FFFFFFFF16, do not use; instead use RIFF size in ds64 chunk

up to 16 EB of RF64 data

f
m
t

"

si
ze

fo
rm

at
 d

at
a

d
a
t
a

w
av

e
da

ta

F
F
F
F
F
F
F
F

16

Figure F.2 - Extended RF64/WAVE format

F.3 Compatibility between BWF and BWF-E

F.3.1 General
Many production audio files will be smaller than 4 GByte and they should continue to use the Broadcast Wave
Format (BWF).

Because a recording application cannot know in advance whether the audio it is recording will exceed 4 GByte,
the recording application must switch from BWF to the extended format (BWF-E) at the 4-GByte file-size limit
while the recording continues.

AES31-2-2019

- 21 -

2019-5-22 printing

The option to switch from BWF to the extended format is achieved by reserving additional space in the BWF
by inserting a ‘JUNK’ chunk (see J.1) that is of the same size as a ds64 chunk (see figure 3). This reserved
space has no meaning for the BWF file, but will be used to locate the ds64 chunk if a transition to BWF-E is
necessary.

R
I
F
F
"

W
A
V
E

si
ze

JUNK chunk as placeholder for
ds64' chunk in case file size will
need to exceed 4 GB

J
U
N
K
"

si
ze

JU
N

K
 d

at
a

f
m
t

"

si
ze

fo
rm

at
 d

at
a

d
a
t
a

si
ze

w
av

e
da

ta

Figure F.3 - Compatible RIFF/WAVE structure

NOTE 1 The JUNK chunk is a padding chunk to be used as a placeholder and it will be ignored
by any audio application.

NOTE 2 there may be other chunks between the format chunk and the wave data chunk.

F.3.2 Initialisation as BWF
At the beginning of a recording, an operation supporting BWF-E shall create a conventional BWF file with a
JUNK chunk as the first chunk (see G.3.4.1). While recording, the application shall monitor the RIFF and data
sizes.

F.3.3 Transition to BWF-E
If the file size will exceed 4 GByte, the application shall:

• Replace the chunkID ‘JUNK’ with ‘ds64’. (This transforms the previous JUNK chunk into a ds64
chunk).

• Insert the RIFF size, data chunk size and sample count in the ds64 chunk

• Set RIFF size, data chunk size and sample count in the 32-bit RIFF fields to FFFFFFFF
16

• Replace the ID ‘RIFF’ with ‘RF64’ in the first four bytes of the file

• Continue with the recording.

NOTE Any other chunks that are valid in a RIFF/WAVE file are also valid in a RF64/WAVE file.

AES31-2-2019

- 22 -

2019-5-22 printing

F.4 RIFF/WAVE and RF64/WAVE structures

F.4.1 Chunks and structs specific to the RIFF/WAVE format
struct RiffChunk /* declare RiffChunk structure */

{

CHAR chunkId[4]; /* ‘RIFF’ */

DWORD chunkSize; /* 4 byte size of the traditional RIFF/WAVE file */

CHAR riffType[4]; /* ‘WAVE’ */

};

struct JunkChunk /* declare JunkChunk structure */

{

CHAR chunkId[4]; /* ‘JUNK’ */

DWORD chunkSize; /* 4 byte size of the ‘JUNK’ chunk. This should be 636 to
be a place-holder for a ‘ds64’ chunk with capacity for 50
ChunkSize64 table entries */

CHAR chunkData[628*]; /* dummy bytes */

};

NOTE 1 This file declaration and JUNK chunk will normally be followed by fmt, bext and
data chunks (see Annex A and clause 4).

NOTE 2 The JUNK chunk shown here is only necessary if the writing application supports
extended file sizes.

NOTE 3 The empty bracket is not standard C/C++ syntax. It is used to show that these arrays
have a variable number of elements (which might even be zero).

NOTE 4 [*] Table size will be a multiple of 12 Bytes. A table of size 50 will need 600 bytes.

AES31-2-2019

- 23 -

2019-5-22 printing

F.4.2 Chunks and Structs specific to the RF64/WAVE (BWF-E) format

NOTE 1 This file declaration and ‘ds64’ chunk will normally be followed by 'fmt ', 'bext'
and 'data' chunks (see Annex A).

NOTE 2 The array of “ChunkSize64” structs is used to store the length of any chunk other
than ‘data’ in the optional part, or 'table' of the ds64 chunk. Currently, no standard chunk type
other than ‘data’ is likely to exceed a size of 4 GByte even in extremely large audio files (for
example, the EBU ‘levl’ chunk will typically exceed 4 GByte only when the ‘data’ chunk
reaches about 512 GByte).

NOTE 3 [*] the size of the table may be more or less than the recommended 50 elements.

struct RF64Chunk /* declare RF64Chunk structure */

{

CHAR chunkId[4]; /* ‘RF64’ */

DWORD chunkSize; /* 0xFFFFFFFF means do not use this data, use
riffSizeHigh and riffSizeLow in ‘ds64’ chunk instead */

CHAR rf64Type[4]; /* ‘WAVE’ */

};

struct ChunkSize64 /* declare ChunkSize64 structure */

{

CHAR chunkId[4]; /* chunk ID (i.e. “big1” – this chunk is a big one) */

DWORD chunkSizeLow; /* low 4 byte chunk size */

DWORD chunkSizeHigh; /* high 4 byte chunk size */

};

struct DataSize64Chunk /* declare DataSize64Chunk structure */

{

CHAR chunkId[4]; /* ‘ds64’ */

DWORD chunkSize; /* 4 byte size of the ‘ds64’ chunk */

DWORD riffSizeLow; /* low 4 byte size of RF64 block */

DWORD riffSizeHigh; /* high 4 byte size of RF64 block */

DWORD dataSizeLow; /* low 4 byte size of data chunk */

DWORD dataSizeHigh; /* high 4 byte size of data chunk */

DWORD sampleCountLow; /* low 4 byte sample count of fact chunk */

DWORD sampleCountHigh; /* high 4 byte sample count of fact chunk */

DWORD tableLength; /* number of valid entries in array “table” */

chunkSize64 table[*];

};

AES31-2-2019

- 24 -

2019-5-22 printing

Annex G (normative) BWFF versions

G.0 Version 0
Version 0 of the BWF was published by the EBU in 1997. There is no equivalent AES standard.

G.1 Version 1
Version 1 was published in July, 2001 by the EBU as EBU T3285-2001. AES31-2 published in 2006 is directly
compatible with this document.

Version 1 differs from Version 0 only in that 64 of the 254 reserved bytes in Version 0 are used to contain a
SMPTE UMID and the <Version> field is changed accordingly.

Version 1 is backwards compatible with Version 0. This means that software designed to read Version 0 files
will interpret Version 1 files correctly except that it will ignore the UMID field.

The change is also forwards compatible. This means that Version 1 software will be able to read Version 0 files
correctly. Ideally, Version 1 software needs to read the <Version> field to determine if a UMID is present.
However if the Version number is not read, software will read all zeros in the UMID field in a Version 0 file.
This will not be a valid UMID and will be ignored.

G.2 Version 2
Version 2 was published by the EBU as EBU T3285-2011.

It differs from Version 1 only in that 10 of the 190 reserved bytes in Version 1 are used to carry information
about the file’s loudness and the <Version> field is changed accordingly.

Version 2 is backwards compatible with Versions 1 and 0. This means that software designed to read Version 1
and Version 0 files will interpret the files correctly except that Version 0 software will ignore the UMID and
loudness information which may be present and Version 1 software will ignore the loudness information.
Therefore, users of such devices will lose metadata unless special precautions are taken. In addition, early
BWF-aware devices will be unable to cope with the larger RF64 and MBWF files and may not recognise any of
the chunks which have been defined since 2001.

The change is also forwards compatible. This means that Version 2 software will be able to read Version 0 and
Version 1 files correctly. Software needs to read the <Version> field to determine if a UMID and loudness
metadata are present.

AES31-2-2019

- 25 -

2019-5-22 printing

Annex H (normative) Loudness parameters

H.1 Treatment of Loudness Parameters
The loudness parameters specified for carriage in the bext chunk (see 4.4) are integer representations of
floating-point parameters derived elsewhere. A precision of two decimal places is preserved by multiplying the
floating-point parameter by 100 before rounding.

The rounding function which shall be used is defined as follows:

integer representation = integer part of (x + sgn(x) · 0.5)

where x is the value to be represented, multiplied by 100

and where sgn() is the signum operator. sgn(x) = -1 if x < 0; 0 if x = 0; 1 if x > 0.

NOTE This rounding method is commonly referred to as “round to nearest, ties away from
zero” because where the fractional part of the number is 5 (midway between integers), the
rounding is up for positive numbers and down for negative numbers.

EXAMPLES
Negative numbers:
Float value Calculation Value carried in bext

(decimal/ hexadecimal)
-22,644 integer[(-22,644 x 100) + sgn(-22,644 x 100) · 0,5] -2264/ F728

16

-22,645 integer[(-22,645 x 100) + sgn(-22,645 x 100) · 0,5] -2265/ F727
16

-22,646 integer[(-22,646 x 100) + sgn(-22,646 x 100) · 0,5] -2265/ F727

16

Positive numbers:
Float value Calculation Value carried in bext

(decimal/ hexadecimal)
12,764 integer[(12,764 x 100) + sgn(12,764 x 100) · 0,5] 1276/ 04FC

16

12,765 integer[(12,765 x 100) + sgn(12,765 x 100) · 0,5] 1277/ 04FD
16

12,766 integer[(12,766 x 100) + sgn(12,766 x 100) · 0,5] 1277/ 04FD

16

If any of the loudness parameters are not being used then their 16-bit integer values shall be set to 7FFF

16
,

which is a value outside the range of the parameter values.

For LoudnessValue, MaxTruePeakLevel, MaxMomentaryLoudness and MaxShortTermLoudness, the
range of valid values is D8F1

16
 to FFFF

16
 (corresponding to the floating-point equivalent values of -99,99 to

-0,01) and 0000
16

 to 270F
16

 (0,00 to 99,99). The most significant bit of the 16-bit hexadecimal number is the
sign bit; hence, values between 8000

16
 and FFFF

16
 represent negative numbers.

For LoudnessRange the range of valid values is 0000

16
 to 270F

16
 (0,00 to 99,99).

When reading the chunk, any parameter values outside their valid ranges shall be ignored.

AES31-2-2019

- 26 -

2019-5-22 printing

H.2 Loudness parameter references
The loudness parameters specified for carriage in the bext and ubxt chunks should be as specified in:

EBU Recommendation R 128, Loudness normalisation and permitted maximum level of audio signals,
European Broadcasting Union, Geneva, Switzerland

EBU Tech 3341, Loudness Metering: ‘EBU Mode’ metering to supplement loudness normalisation in
accordance with EBU R 128, European Broadcasting Union, Geneva, Switzerland

EBU Tech 3342, Loudness Range: A descriptor to supplement loudness normalisation in accordance with EBU
R 128, European Broadcasting Union, Geneva, Switzerland

H.3 Loudness informative references
ITU-R BS.1770 Algorithms to measure audio programme loudness and true-peak audio level, International
Telecommuniction Union, Geneva, Switzerland

EBU Tech 3343, Practical Guidelines for Production and Implementation in accordance with EBU R 128,
European Broadcasting Union, Geneva, Switzerland

EBU Tech 3344, Practical Guidelines for Distribution of Programmes in accordance with EBU R 128,
European Broadcasting Union, Geneva, Switzerland

AES31-2-2019

- 27 -

2019-5-22 printing

Annex I (normative) Universal broadcast audio extension chunk

I.1 General
The ubxt chunk is always used as an addition to the bext chunk in BWFF.

I.2 Contents of a BWFF with ‘ubxt’ chunk
A BWFF with ubxt shall contain the RIFF “WAVE” header and at least the following chunks:

I.3 Universal broadcast audio extension chunk
The information contained in the Broadcast Audio Extension bext chunk defined in section 4.4 may
additionally be extended by a dedicated chunk called “Universal Broadcast Audio Extension”, or “ubxt” chunk
to express the human-readable information of the bext chunk in multi-byte languages. The basic structure of
this metadata chunk is the same as that of the bext chunk. Four human-readable items, uDescription,
uOriginator, uOriginatorReference and uCodingHistory, are described in UTF-8 (8-bit UCS
Transformation Format) instead of ASCII. The first three items have 8 times the data size of the corresponding
items in the bext chunk. The structure of the ubxt chunk is defined as follows:

<WAVE-form>
RIFF(‘WAVE’
 <fmt-ck> /* Format of the audio signal: PCM/MPEG */
 <broadcast_audio_extension> /* information on the audio sequence */
 <universal_broadcast_audio

extension>
/* ubxt is required for multibyte language
support only */

 <wave-data>) /* sound data */

typedef struct chunk_header {
 DWORD ckID; /* (universal broadcast extension)ckID=ubxt */
 DWORD ckSize; /* size of extension chunk */
 BYTE ckData[ckSize]; /* data of the chunk */
} CHUNK_HEADER;
typedef struct universal_broadcast_audio_extension {
BYTE uDescription[256*8]; /* UTF-8 : “Description of the sound sequence” */
BYTE uOriginator[32*8]; /* UTF-8 : “Name of the originator” */
BYTE
uOriginatorReference[32*8];

/* UTF-8 : “Reference of the originator” */

CHAR OriginationDate[10]; /* ASCII : “yyyy-mm-dd” */
CHAR OriginationTime[8]; /* ASCII : “hh:mm:ss” */
DWORD TimeReferenceLow; /* First sample count since midnight, low word */
DWORD TimeReferenceHigh; /* First sample count since midnight, high word */
WORD Version; /* Version of the BWF; unsigned binary number. See

annex F */
BYTE UMID_0; /* Binary byte 0 of SMPTE UMID */
....
BYTE UMID_63; /* Binary byte 63 of SMPTE UMID */
INT LoudnessValue; /* Integrated Loudness Value of the file in LKFS

(multiplied by 100) see annex G */
INT LoudnessRange;

/* Loudness Range of the file in LU (multiplied by
100) see annex G */

INT MaxTruePeakLevel; /* Maximum True Peak Level of the file expressed
as dBTP (multiplied by 100) see annex G */

INT MaxMomentaryLoudness; /* Highest value of the Momentary Loudness Level
of the file in LKFS (multiplied by 100) see annex
G */

INT MaxShortTermLoudness; /* Highest value of the Short-Term Loudness Level
of the file in LKFS (multiplied by 100) see annex
G */

AES31-2-2019

- 28 -

2019-5-22 printing

The content of the fields in the ubxt chunk shall be defined as shown in table I.1.

When a given code value in UTF-8 is out of the subset (as defined in Chapter 12 of ISO/IEC 10646) supported
by a piece of processing equipment, the value shall be unchanged and ignored for processing.

All the items except uDescription, uOriginator, uOriginatorReference and uCodingHistory shall
have the same content as that of each corresponding item of the bext chunk (clause 4.4). When data is entered
into the human-readable fields of the ubxt chunk, the equivalent fields in the bext chunk should provide an
ASCII equivalent if possible (see note), or a null character. When machine-readable data in the 'ubxt' chunk is
updated, the corresponding machine-readable data in the 'bext' chunk shall also be updated identically. If the
machine-readable fields of the bext and ubxt chunks is different for any reason, the content of the bext chunk
shall be preferred.

Note It is not intended that the operator make an ASCII translation of the original-language
UTF-8 string. It is expected that the application will insert an ASCII default string into the 'bext'
chunk as an indication that UTF-8 information exists in the 'ubxt' chunk. An example might be,
"See data in UBXT chunk".

Table I.1 – ubxt field content definitions

BYTE Reserved[180]; /* 180 bytes, reserved for future use, set to
“NULL” */

CHAR uCodingHistory[]; /* UTF-8 : « History coding » */
} UNIV_BROADCAST_EXT

uDescription Human UTF-8 string, 2 048 bytes or less, containing a description of the
sequence. If line breaks are used, lines shall be terminated by
<CR><LF>. If data is not available or if the length of the string is
less than 2 048 bytes, the first unused byte shall be a null character
(0016).

uOriginator Human UTF-8 string, 256 bytes or less, containing the name of the
originator of the audio file. If data is not available or if the length of
the string is less than 256 bytes, the first unused byte shall be a null
character (0016).

uOriginatorReference Human UTF-8 string, 256 bytes or less, containing a reference allocated by
the originating organization. If data is not available or if the length
of the string is less than 256 bytes, the first unused byte shall be a
null character (0016).

OriginationDate Human 10 ASCII characters containing the date of creation of the audio
sequence. The format is « “year” - “month” - “day” » with 4
characters for the year and 2 characters per other item. Hyphen
characters, “-”, shall be used as separators within the date
expression in compliance with ISO 8601.

“year” is defined from 0000 to 9999

“month” is define from 01 to 12

“day” is defined from 01 to 31

Some legacy implementations may use “_” underscore, “:” colon, “
” space, “.” period; reproducing equipment should recognize these
separator characters.

AES31-2-2019

- 29 -

2019-5-22 printing

OriginationTime Human 8 ASCII characters containing the time of creation of the audio
sequence. The format is « “hour” : “minute” : “second” » with 2
characters per item. Colon characters, “:“, shall be used as
separators within the time expression in compliance with ISO 8601.
If data is unavailable, the default value shall be 00:00:00.

“hour” is defined from 00 to 23.

“minute” and “second” are defined from 00 to 59.

Some legacy implementations may use “_” underscore, “-” hyphen,
“ ” space, “.” period; reproducing equipment should recognize these
separator characters.

TimeReference Machine This field shall contain the sample address count [time code] of the
sequence. It is a 64-bit unsigned value which contains the sample
count since midnight of the first sample in the audio data. The
number of samples per second depends on the sample frequency
which is defined in the field <nSamplesPerSec> from the <fmt-
ck>.

Version Machine An unsigned binary number indicating the version of the BWF.

For Version 1 it shall be set to 000116 and

for Version 2 it shall be set to 000216.

This is set to 000216.

64 bytes containing an extended UMID to SMPTE ST 330. If a
32-byte basic UMID is used, the last 32 bytes shall be filled with
zeros. If no UMID is available, the 64 bytes shall be filled with
zeros.

UMID Machine

NOTE the length of the UMID is coded at the head of the UMID
itself.

LoudnessValue Machine The Integrated Loudness value of the file in LKFS (multiplied by
100). A 16-bit signed integer, being the integer of (100 × the
Integrated Loudness value of the file in LKFS) ±0.5. See Annex G
for more details on the method of conversion.

LoudnessRange Machine A 16-bit signed integer, representing the Loudness Range of the file
in LU. See annex G.

MaxTruePeakLevel Machine A 16-bit signed integer, being the integer of (100 × the Maximum
True Peak value of the file in dBTP) ±0.5. See Annex G for more
details on the method of conversion.

MaxMomentaryLoudness Machine A 16-bit signed integer, being the integer of (100 × the highest
value of the Momentary Loudness Level of the file in LKFS) ±0.5.
See Annex G for more details on the method of conversion.

MaxShortTermLoudness Machine A 16-bit signed integer, being the integer of (100 × the highest
value of the Short-term Loudness Level of the file in LKFS) ±0.5.
See Annex G for more details on the method of conversion.

Reserved Machine 180 bytes reserved for extension. These 180 bytes shall be set to
zero.

AES31-2-2019

- 30 -

2019-5-22 printing

uCodingHistory Human A variable-size block of UTF-8 characters comprising 0 or more
strings each terminated by <CR><LF>. The first unused character
shall be a null character (0016).

Each string shall contain a description of a coding process applied
to the audio data. Each new coding application should add a new
string with the appropriate information.

See EBU R99.

AES31-2-2019

- 31 -

2019-5-22 printing

Annex J Bibliography

1 Microsoft Resource Interchange File Format, RIFF,
available at http://www.tactilemedia.com/info/MCI_Control_Info.html

2 Microsoft Windows Multimedia Programmer's Reference. Redmond, Washington:
Microsoft Press, 1991. ISBN: 1-55615-389-9. Chapter 8 describes the RIFF tagged file structure.

3 EBU Tech 3285-2001: BWF - a format for audio data files in broadcasting. Version 1 European
Broadcasting Union, Geneva, Switzerland

4 EBU Tech 3285-2011: BWF - a format for audio data files in broadcasting. Version 2 European
Broadcasting Union, Geneva, Switzerland

5 EBU Tech Document T3306: 2007-02; RF64: An extended File Format for Audio; European
Broadcasting Union, Geneva.

6 ITU-R BR.1352-2-2002, File format for the exchange of audio programme materials with metadata on
information technology media. Second edition, first published 1999. European Broadcasting Union,
Geneva, Switzerland

7 EBU Tech 3285_S1-1997, Specification of the Broadcast Wave Format, A format for audio data files
in broadcasting, Supplement 1 – MPEG audio European Broadcasting Union, Geneva, Switzerland

8 EBU Tech 3285_S4-2003, Specification of the Broadcast Wave Format, A format for audio data files
in broadcasting, Supplement 4: <link> chunk European Broadcasting Union, Geneva, Switzerland

9 EBU Tech 3285_S5-2003, Specification of the Broadcast Wave Format, A format for audio data files
in broadcasting, Supplement 5 <axml> chunk European Broadcasting Union, Geneva, Switzerland

10 EBU Recommendation R98-1999 Format for the <CodingHistory> field in Broadcast Wave Format
files European Broadcasting Union, Geneva, Switzerland

11 EBU Recommendation R99-1999 ‘Unique’ Source Identifier (USID) for use in the
OriginatorReference field of the Broadcast Wave Format European Broadcasting Union, Geneva,
Switzerland

12 EBU-N22-1997, The Broadcast Wave Format, A format for audio data files in broadcasting European
Broadcasting Union, Geneva, Switzerland

13 EBU Recommendation R85-1997. Use of the Broadcast Wave Format for the exchange of audio data
files European Broadcasting Union, Geneva, Switzerland

14 Japan Post Production Association. http://www.jppanet.or.jp/

15 Sustainability of Digital Formats - Planning for Library of Congress Collections, National Digital
Information Infrastructure and Preservation Program.
http://www.digitalpreservation.gov/formats/fdd/descriptions.shtml

16 IEC 62942 File format for professional transfer and exchange of digital audio data. International
Electrotechnical Commission, Geneva, Switzerland (in development)

	AES31-2-2019
	Abstract
	Contents
	Foreword
	Foreword to 2012 edition
	Foreword to 2019 edition
	Note on normative language

	0 Introduction
	0.1 General
	0.2 Data types

	1 Scope
	2 Normative references
	3 Definitions and abbreviations
	4 BWF file
	4.1 Existing Chunks defined as part of the RIFF Format
	4.2 Additional chunks
	4.3 Contents of a BWFF
	4.4 Broadcast audio extension chunk

	Annex A (normative) RIFF Wave file format
	A.1 Waveform audio file format (Wave)
	A.1.1 General
	A.1.2 Required Wave chunks
	A.1.3 Wave format chunk
	A.1.4 Wave format categories

	A.2 PCM format
	A.2.1 Data packing for PCM WAVE files
	A.2.2 Data format of the samples
	A.2.3 Examples of PCM Wave files

	A.3 Storage of Wave data

	Annex B (normative) Chunk order
	Annex C (normative) Filename conventions
	C.1 General
	C.2 File-name length
	C.3 File-name extension
	C.4 File-name character set

	Annex D (informative) Multi-channel usage
	D.1 General
	D.2 Multi-channel audio data packing
	D.3 Channel assignments in multi-channel files

	Annex E (informative) Other audio codings
	E.1 General
	E.2 MPEG files

	Annex F (normative) Extended file format (BWF-E)
	F.1 Introduction
	F.2 Exceeding the 4-gigabyte limit
	F.3 Compatibility between BWF and BWF-E
	F.4 RIFF/WAVE and RF64/WAVE structures

	Annex G (normative) BWFF versions
	G.0 Version 0
	G.1 Version 1
	G.2 Version 2

	Annex H (normative) Loudness parameters
	H.1 Treatment of Loudness Parameters
	H.2 Loudness parameter references
	H.3 Loudness informative references

	Annex I (normative) Universal broadcast audio extension chunk
	I.1 General
	I.2 Contents of a BWFF with ‘ubxt’ chunk
	I.3 Universal broadcast audio extension chunk

	Annex J Bibliography

